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grid resolution can be used in all or part of the domain
without sacrificing the convergence rate of a less-re-A full-approximation storage multigrid method for solving the

steady-state 2-d incompressible Navier–Stokes equations on stag- solved problem.
gered grids has been implemented in Fortran on the CM-5,using Parallel computing is advantageous because of the large
the array aliasing feature in CM-Fortran to avoid declaring fine-grid- problem sizes which can be accommodated. The computa-
sized arrays on all levels while still allowing a variable number

tional speeds (e.g., Mflops) which can be obtained, how-of grid levels. Thus, the storage cost scales with the number of
ever, are strongly algorithm-dependent and, for a particu-unknowns,allowing us to consider significantly larger problems

than would otherwise be possible. Timings over a range of problem lar algorithm, strongly problem-size dependent. The
sizes and numbers of processors, up to 4096 3 4096 on 512 nodes, effective computation rate depends on the relative
show that the smoothing procedure, a pressure-correction tech- amounts and speeds of computation and interprocessor
nique, is scalable and that the restriction and prolongation steps

communication. Raw communication speeds are typicallyare nearly so. The performance obtained for the multigrid method
orders of magnitude slower than floating-point operations.is 333 Mflops out of the theoretical peak 4 Gflops on a 32-node CM-5.

In comparison, a single-grid computation obtained 420 Mflops. Thus more often than not the communication steps in the
The decrease is due to the inefficiency of the smoothing iterations algorithm, and the network performance for these steps,
on the coarse grid levels. W cycles cost much more and are much strongly influence the parallel run time.
less efficient than V cycles, due to the increased contribution from

Because of the aforementioned advantages of multigridthe coarse grids. The convergence rate characteristics of the pres-
methods and parallel computing, there has been muchsure-correction multigrid method are investigated in a Re 5 5000

lid-driven cavity flow and a Re 5 300 symmetric backward-facing interest in developing and testing parallel multigrid pro-
step flow, using either a defect-correction scheme or a second-order grams, as summarized in Refs. [31, 35, 58]. A key issue,
upwind scheme. A heuristic technique relating the convergence one which appears in more than one context in parallel
tolerances for the coarse grids to the truncation error of the discreti-

computing, is scalability. A scalable parallel architecture iszation has been found effective and robust. With second-order up-
one whose interprocessor communication network pro-winding on all grid levels, a 5-level 3203 80 step flow solution was

obtained in 20 V cycles, which corresponds to a smoothing rate of vides a fixed bandwidth for a particular communication
0.7, and required 25 s on a 32-node CM-5. Overall, the convergence operation, e.g., all-to-all broadcast, as the number of pro-
rates obtained in the present work are comparable to the most cessors grows. Scalable parallel algorithms are, in an abso-
competitive findings reported in the literature. Q 1996 Academic

lute sense, those whose computational and communicationPress, Inc.

complexity both depend only on the problem size per pro-
cessor. All the processors must be involved for all the steps.
In a relative sense, scalable algorithms are those which1. INTRODUCTION
obtain linear speedup in the scaled-size experiment [23,
28]. However, the introduction of the idea of speedup toThe convergence rate of iterative methods for solving

the steady-state incompressible Navier–Stokes equations assess scalability is somewhat painful, since it depends on
how one defines speedup [22]. Scalable implementation,can be greatly improved using multigrid acceleration

techniques, which were first described in this context by yet another context, refers to the memory requirements
of the parallel program, and how these increase with theBrandt [6]. Multigrid methods work by damping both

oscillatory and smooth solution error components quickly, number of processors.
Real problem-solving programs consist of many constit-and hence are especially advantageous for flow problems

with disparate physical scales—rapidly varying errors can uent algorithms, any or all of which may have to be iterated
many times as part of the solution procedure. In the contextbe damped quickly on fine grids, while smooth errors

can be damped quickly on coarser grids. The main of solving the steady-state Navier–Stokes equations, the
number of iterations is unknown beforehand and is prob-advantage of using such techniques is that much greater
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lem-dependent. Consequently, numerical experiments and
timings on test problems, for a range of problem sizes and
numbers of processors, are essential for identifying and
clarifying the relevant issues. In this research a multigrid
algorithm, using a sequential pressure-based solution pro-
cedure to solve the governing equations on each grid level,
has been implemented on a CM-5 using single-instruction
stream/multiple-data stream data-parallelism. The algo-
rithm’s performance is discussed from two perspectives,

FIG. 1. Schematic of a V(3,2) multigrid cycle.first from the standpoint of computational efficiency and
scalability, and second from the standpoint of the conver-
gence rate characteristics. We have studied the cost per
cycle for fixed V and W multigrid cycles, using timings for explanations which show precisely how fine-grid solution
a range of problem sizes and numbers of processors, up errors are eliminated in a few V cycles for the Poisson
to 4096 3 4096 on 512 nodes. V cycles are better in terms equation using point-Jacobi smoothing iterations and bilin-
of cost on the CM-5, and good convergence rates can be ear restriction and prolongation procedures, and there are
attained when the initial fine-grid guess is generated by a several good reviews of multilevel algorithms in a variety
nested-iteration (‘‘full-multigrid’’) procedure. We demon- of other contexts as well [15, 16, 26, 10].
strate and discuss this point in the context of a Re 5 300 W cycles are generated when the coarse-grid corrections
symmetric backward-facing step flow and a Re 5 5000 lid- are updated twice instead of once before being interpolated
driven cavity flow. Also, comparisons are made between to the fine grid, as shown in Fig. 2. The convergence acceler-
the defect-correction technique and second-order up- ation of multigrid comes from the coarse-grid corrections
winding. Both methods give a formally second-order accu- [16] and thus W cycles usually converge faster. However,
rate discretization on the finest grid level and are stable larger corrections require more post-smoothing to avoid
for the high cell Peclet number problems that arise on the stability problems and so the additional cost of W cycles
coarse grids. However, they impact the convergence rate is an issue, an important one for SIMD-style parallel com-
and stability of multigrid iterations in different and prob- putation.
lem-dependent manners. The cost of one V cycle using nlevel levels and (npre , npost)

pre- and post-smoothing iterations can be modelled as
2. BACKGROUND

2.1. Description of Multigrid Scheme and Time(s)
V cycle

5 Onlevel

k51
sk(npre 1 npost) 1 Onlevel

k52
(rk 1 pk), (1)

Smoothing Procedure

The components of a multigrid method are the smooth-
where sk , rk , and pk are the times for one pressure-correc-ing procedure by which the equations on each grid level
tion iteration on level k, for restriction from level k toare solved, and the restriction and prolongation procedures
level k 2 1, and for prolongation to level k from levelby which the equation residuals and correction quantities
k 2 1. For W cycles, the run time can be modelled asare transferred between grid levels. The multigrid scheme

specifies how coarse-grid problems are generated from the
fine-grid problem and in what order the multiple grid levels Time(s)

W cycle
5 Onlevel

k51
sk(npre 1 npost)2(nlevel2k)

are visited, i.e., the cycle type. Briefly, one multigrid V
iteration is a recursive algorithm which has the following
steps: pre-smoothing iterations, restriction to a coarse grid, 1 Onlevel

k52
(rk 1 pk)2(nlevel2k). (2)

solving the coarse grid problem for coarse-grid corrections,
prolongation of corrections to the fine grid, and post-
smoothing iteraitons. The coarse-grid problems are solved Thus the number of smoothing iterations on the coarsest

grid (k 5 1) increases geometrically with the number ofby recursion, which leads to the V shape of the cycle, as
shown in Fig. 1. In the figure the number of pre-smoothing levels for a W cycle. On a serial computer it is generally

reasonable to neglect the restriction and prolongation costand post-smoothing iterations are shown inside the circles;
it is a fixed V(3,2) cycle. in comparison with smoothing, and to assume that the

smoothing cost is proportional to the number of unknowns;For linear equations such a procedure is typically very
efficient, depending on how fine-grid solution errors are i.e., the cost on level k 2 1 is Af of the cost for level k in

2-d. Furthermore, this model allows one to measure thedamped through the process of smoothing and coarse-grid
correction. Briggs [9] gives both spectral and algebraic multigrid cycle cost in terms of work units, equivalent to
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ever, it is not always possible to use the same discretization
on each grid level. For example, central-differencing the
convection terms is likely to be unstable on coarse grids
in most problems, depending on the boundary conditions
[45]. The multigrid iterations will diverge if the smoothing
iterations diverge on the coarse grid(s). However, it is also
difficult to use central-differencing on the fine grid for
accuracy and first-order upwinding on the coarse grids,
unless special restriction and prolongation procedures are

FIG. 2. Schematic of a W(3,2) multigrid cycle. employed, or unless the convection effect is not dominant.
We have studied two ‘‘stabilization strategies’’ that deal
with this problem, namely the use of defect corrections as
in Refs. [50, 55, 57, 3, 2] and the use of an unconditionallyfine-grid iterations. The cost on parallel computers must

be measured because the assumption of equal smoothing stable second-order convection scheme on each grid level,
i.e., second-order upwinding. These techniques and theefficiency regardless of problem size is no longer valid.

The full-approximation storage (FAS) scheme, de- restriction and prolongation procedures used are presented
in conjunction with the results.scribed by Brandt [6], is used to form the coarse-grid equa-

tions taking account of the nonlinearity of the fine-grid The smoother used is the semi-implicit method for pres-
sure-linked equations (SIMPLE [40]), which along withproblem. In this scheme, one obtains an approximation to

the full fine-grid solution, on the coarse grids, by adding SIMPLEC [14] and SIMPLER [39] is described as a
sequential pressure-based method for the steady-stateappropriately averaged source terms to the coarse-grid

equations. The coarse-grid problem is treated the same as incompressible Navier–Stokes equations. The term
smoother is used in the multigrid literature to emphasizethe fine-grid one, by discretizing the original equations on

the coarse grid. Thus the same solution technique for the the role of the solution method as one of eliminating only
those errors which are oscillatory on the scale of the gridNavier–Stokes equations is used on all grid levels, with

the additional numerically derived source terms treated level under consideration. However, in the present context,
where, due to the nonlinearity of the governing equations,like physical source terms.

If the governing equations are fully coupled and solved errors propagate through the multigrid cycle in unpredict-
able manners, there is much discussion about which numer-by iteration, then the solution of the linearized equations

can employ the ‘‘correction’’ scheme, wherein coarse-grid ical methods for the steady-state incompressible Navier–
Stokes equations perform best in the FAS multigrid settingequations for the errors only, not the full solutions, are

derived directly from the discretized fine-grid equations, [61]. In the sequential pressure-based methods, the velocity
components are (separately) updated by applying severalusually by the Galerkin approximation [62]. Correction

schemes may also be used for the pressure equation [5, iterations of a point- or line-iterative method to the implic-
itly discretized momentum equations, with pressure lagged.25, 42, 43] in a sequential solution procedure. In the latter

context, however, the convergence rate deterioration with An approximate pressure-Poisson equation is derived from
the discrete momentum and continuity equations to correctincreasing problem size of the outer iterations persists be-

cause the velocity–pressure coupling is not addressed. In both the pressure and velocity fields. An approximate solu-
tion is obtained by taking a few iterations. Thus after oneunsteady flow algorithms multigrid correction schemes are

also used, e.g., in projection methods [12, 37] to solve the iteration neither mass nor momentum is conserved but it
was not necessary to solve the pressure-Poisson equationpressure-Poisson equation. The important distinction is

again that the steady-state discretized equations or equiva- to strict tolerances. Due to the approximation made in
the pressure–velocity correction relationship, these outerlently the fully implicit time-dependent equations do not

boil down to solving a linear system of equations in the iterations are repeated until convergence. Thus, the com-
putational nature of the method is best described as dou-sequential pressure-based algorithms. We solve the full set

of equations on each grid level and couple the grid levels ble-iterative. The convergence rate depends on the inner
iterations, the underrelaxation factors, the Reynolds num-using FAS, whereas in time-dependent methods multigrid

is typically applied to accelerate the solution of the pressure ber, the strength of pressure–velocity coupling in the flow
problem, and the grid distribution.Poisson equation. Thus, for the latter, multigrid techniques

make the cost per time-step scalable but the time-step size Recently we have implemented the single-grid method
on single-instruction stream/multiple-data stream comput-is still restricted by the problem size through the viscous

stability constraint. ers such as the MasPar MP-1 and Connection Machine
CM-5 [4]. Because every iteration is a synchronizationWith FAS the discrete problem on each grid level is

obtained by discretizing the differential equations. How- point and there need to be frequent global sums to compute
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equation residuals and monitor convergence, the SIMD of providing non-isotropic error smoothing properties to
match the physics of the problem. These researches indi-model is a natural match. With regard to performance,

though, note that the essential character of the algorithm, cate that sequential pressure-based methods are viable
multigrid smoothers, and that the competitiveness withnamely its division into communication and computation

operations and the mapping of data to processors, would Vanka’s smoother is a problem-dependent consideration.
Other experiences with steady-state incompressible flowsbe the same on any distributed memory machine. The key

is the data-parallel approach to parallelizing the algorithm, via multigrid methods include Refs. [34, 60].
For parallelization we have implemented Vanka’snot the SIMD vs MIMD distinction [24]. For large problem

sizes, the single-grid computational speeds that were mea- method with a red–black updating scheme, so we call the
method ‘‘block-red–black,’’ BRB, by analogy. Althoughsured (420 MFlops) were consistent with others’ results

[17, 27], and achieved parallel efficiencies approaching 0.8. we have not made convergence rate comparisons because
of the problem-dependency of the results, we have com-We used point-Jacobi inner iterations, which require only

local updating of variables. Consequently, the run time per pared the cost per iteration. Timings show that the cost
per iteration is virtually the same as BRB when 3, 3, anditeration was scalable in the absolute sense. Also, to make

the cost per iteration scalable, it was necessary to compute 9 inner point-Jacobi iterations are used for SIMPLE [3]. On
serial computers, it is cost-effective to use line-relaxation inequation coefficients using a uniform formulation to do the

boundary control volumes simultaneously with the interior the inner iterations for the SIMPLE method. On the CM-5,
however, it is relatively less attractive in comparison withcontrol volumes.

In many cases the single-grid SIMPLE method with point-wise relaxation—one line-Jacobi iteration takes
roughly four times as long as a point-Jacobi iteration. Line-point-Jacobi inner iterations requires small relaxation fac-

tors and consequently converges slowly. However, with variants on Vanka’s scheme are possible but not competi-
tive in CM-Fortran because prohibitively expensive inter-multigrid, good convergence rates are attainable, as our

results show. Furthermore, the multigrid procedure can processor communications are necessary.
add robustness in comparison to the single-grid SIMPLE
method [46]. Recent work on nonlinear monotone convec-

2.2. Parallel Multigrid Issues
tion schemes [51] and composite-overlapping grid algo-
rithms [59] has added significant flexibility to the solution Parallel multigrid methods in CFD [1, 20, 21, 31, 33]

have received much attention recently motivated by theirmethodology. Sequential pressure-based methods work for
both incompressible and compressible flow regimes, and almost ideal scalability (O(log2N) for problem size N on

np 5 N processors, in theory) on Poisson equations. Onhave been applied to a variety of aerodynamic and phase
change/heat transfer problems. See Ref. [45] for back- parallel computers, however, the computational complex-

ity is not an accurate reflection of the run time, becauseground and an extensive list of references.
Vanka [57] has developed a locally coupled explicit all computations are not carried out with equal efficiency

and because the contribution from communication is ig-method for the steady-state incompressible Navier–Stokes
equations. As a single-grid solver it is slowly converging, nored. One of the biggest practical concerns is the nature

of the workload generated by the smoothing iterations onbut in the multigrid context it is evidently a good smoother.
Linden et al. [32] reviewed multigrid methods for the coarse grid levels, which is characterized by very low ratios

of computation to communication work. The degree tosteady-state incompressible Navier–Stokes equations and
stated a preference for Vanka’s method (called block- which this affects the overall efficiency of a given multigrid

cycle depends on the particulars of the parallel machineGauss–Seidel, BGS) over sequential methods, but no di-
rect comparisons were made. Sockol [50] has compared and the algorithm, although the effect is the same for any

data-parallel computation mapped in a blockwise fashion.the performance of BGS, two line-updating variations on
BGS, and the SIMPLE method with successive line-under- Several ideas are being explored to improve the effi-

ciency with which the coarse grid level work is carried out.relaxation for the inner iterations on three model flow
problems with different characteristics, varying grid aspect One idea is to use multiple coarse grids to increase the

efficiency of the computations and communications (seeratios, and a range of Reynolds numbers. Each method
was best, in terms of work units, in some range of the Refs. [38, 20, 49] and the references therein for recent

research along this line). In absolute terms, more computa-parameter space. Brandt and Yavneh [8] have studied the
error smoothing properties of a multigrid method which tion and communication are done per cycle, but more

efficiently if the multiple coarse grids are treated in parallel.uses a line-iterative sequential smoother for the incom-
pressible Navier–Stokes equations. Good convergence The obvious problem is making the extra work pay off in

terms of convergence rate. Another idea is to alter therates were observed for ‘‘entering-type’’ flow problems in
which the flow has a dominant direction and is aligned grid-schedule to only visit the coarsest grid levels every

couple of cycles. This approach can lead to nearly scalablewith grid lines. Evidently, line-relaxation has the effect
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implementations [21, 30] but may sacrifice the convergence
rate. ‘‘Agglomeration’’ is an efficiency-increasing tech-
nique used in MIMD multigrid programs which refers to
the technique of duplicating the coarse grid problem in
each processor so that computation proceeds indepen-
dently (and redundantly). Such an approach can also be
scalable [33].

The degree to which the aforementioned ideas improve
the fundamental efficiency/convergence rate tradeoff is
unknown. There have also been efforts to devise novel
multilevel algorithms with more parallelism for SIMD
computation [18, 19, 20]. These efforts and others have
recently been reviewed [11, 35, 58]. Most of these algo-
rithms are still untested in the context of the incompressible
Navier–Stokes equations.

Another concern is the multigrid storage problem.
Dendy et al. [13] have recently described a multigrid
method on the CM-2. However, to accommodate the data- FIG. 3. Smoothing cost, in terms of elapsed and busy time on a
parallel programming model they had to dimension their 32-node CM-5, as a function of the multigrid level for a case with a

1024 3 1024 fine grid. The elapsed time is the one on the right (alwaysarray data on every grid level to the dimension extents
greater than the busy time). The times correspond to five SIMPLE itera-of the fine-grid arrays. This approach is very wasteful of
tions.storage, but is difficult to avoid with distributed memory

parallel computers. Consequently the size of problems
which can be solved is greatly reduced. Recently an im-

option was not needed here. We are further motivated toproved release of the CM-Fortran compiler has enabled
choose CM-Fortran over serial Fortran/C combined withthe storage problem to be circumvented with some pro-
explicit message-passing to take advantage of recent devel-gramming diligence. The storage issue and the implemen-
opments in portable parallel compilers. Recently, Appliedtational trick we have used are described in the Appendix.
Parallel Research released an HPF compiler which canOur implementation has the same storage requirements
compile the NAS parallel benchmarks on the Cray T3D,as serial multigrid algorithms. The High-Performance
IBM SP-2, and Intel Paragon parallel computers [44]. CM-Fortran (HPF) compilers currently becoming available will
Fortran is essentially a subset of HPF, and thus we areallow the same approach to be employed for multigrid
optimistic that our code will be highly portable. Althoughalgorithms on many distributed-memory machines.
SIMD architectures have lost ground to MIMD and shared
memory, the data-parallel computational model which

3. RESULTS
CM-Fortran exploits is ubiquitous and probably will in-
crease in popularity as portable data-parallel compilersThe CM-5 used in the present work is a collection of
mature.SPARC processing nodes, each with four attached vector

floating-point units. Each vector unit is a computer and a
3.1. Efficiency and Scalability on the CM-5

memory manager for 32 MBytes. Thus, a 32-node CM-5
actually has 128 independent processing elements. The Inefficiency of the Coarse-Grid Smoothing and Implica-

tions. Figure 3 displays the relative cost of the smoothingSPARC nodes are connected by a special ‘‘control net-
work’’ which is automatically exploited to provide synchro- iterations for the coarse grid levels, for a representative

multigrid calculation on 32 nodes. The finest grid level,nization of the nodes’ execution and to compute global
reduction-type operations when the CM-Fortran language level 9, corresponds to a 1024 3 1024 grid, and the coarsest

grid level corresponds to 4 3 4. The times given are foris used. A separate ‘‘data network’’ interconnects the pro-
cessors by a fat-tree [52]. five SIMPLE iterations; i.e., they correspond to one V(3,2)

cycle, using 3, 3, and 9 inner point-Jacobi iterations on theCM-Fortran, which exploits array-based data-parallel-
ism, is sufficient for the present application. Using CM- u, v, and pressure-correction equations, respectively. The

smoothing cost would be translated up or down dependingFortran, synchronization and interprocessor communica-
tion are accomplished by compiler-generated calls to a on the number of pre-and post-smoothing iterations per

cycle.run-time communication library. It is also possible to pro-
gram the CM-5 using explicit message-passing, if needed From the figure, one can see that for the CM-5 the

coarse-grid levels’ smoothing cost, while still small in com-for example for load-balancing considerations, but that
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parison with the cost of fine-grid pressure-correction itera-
tions, is no longer negligible. In fact, there is basically no
decrease in the smoothing times beneath level 5, which
corresponds to a 128 3 128 grid. In Fig. 3, the bar on the
left is the CM-5 busy time and the bar on the right is the
corresponding elapsed time. Busy time is the time spent
doing parallel computation and interprocessor communi-
cation operations. The elapsed time is the busy time plus
the contribution from front-end-to-processor communica-
tion, i.e., the passing of code blocks, which is effectively a
constant overhead. Beneath level 5, this overhead domi-
nates, and consequently we do not see the coarse-grid
smoothing cost (elapsed time) go to zero as VP goes to
zero, as is the case for serial computation.

Nor do the busy times scale linearly, but this is related
to the efficiency of interprocessor communication and vec-
torized computation. For nearest-neighbor interprocessor FIG. 4. Elapsed and busy time per cycle on a 32-node CM-5, as a

function of the problem size, given in terms of VP. The number of levelscommunication of arrays that are mapped onto the proces-
is fixed at 7 as the dimensions of the finest grid are increased.sor mesh by contiguous blocks, there are effectively three

different communication speeds, because (1) some of the
data stay on the same vector unit; (2) some data must

the next section. To summarize, it is no longer clear onmove between vector units but stay on the same SPARC
the CM-5, in comparison with serial computations, thatnode; and (3) some of the data must move between SPARC
the convergence rate benefit of W cycles can be gained atnodes. Thus the communication performance and, due to
reasonable expense. Repeating the experiment with 5 orthe vector units, the computation performance, are
3 levels shows that the coarse grids impact the efficiencystrongly dependent on the problem size. In previous work
less, but of course the convergence rate using a truncated[4] we have found that on the CM-5 the peak efficiency
number of levels would be poorer. Generally the tradeoffof smoothing iterations is not obtained until the problem
between V and W cycles, and the choice of the numbersize is greater than about 2K unknowns (per processor).
of levels, is problem-dependent, but the tradeoff is shiftedFor large problem sizes, the best performance is achieved
in favor of V cycles on the CM-5 in comparison to thebecause the vector units are full and surface-area/volume
situation for serial computations. For the flow problemseffects make effectively all communication of the fastest
considered here, satisfactory convergence rates have beentype.
obtained using V cycles with a special full-multigrid strat-In the present application, only computation is useful
egy to be described shortly.work. Therefore, coarse-grid smoothing iterations, which

contain proportionately less computation but the same Scalability of Restriction and Prolongation Opera-
tions. As for serial computation, the contribution to theoverheads as fine-grid iterations, are very inefficient on

the CM-5. In a W cycle, a grid level k is visited 2nlevel2k cost per cycle from the restriction and prolongation opera-
tions is small, as can be seen from Fig. 5. The restrictiontimes (see Eq. (2)), as compared to twice for a V cycle.

Figure 4 plots the elapsed and busy times for 7 level V cost is not shown for clarity but is slightly less than prolon-
gation and shows the same trend. The ratio of the times(3,2) and W(3,2) cycles, as measured on the 32-node CM-5,

against the virtual processor ratio of the finest grid level. for restriction, prolongation, and smoothing tends toward
1 : 2 : 13 on the 32-node CM-5, as the problem size increases.The number of levels is kept fixed as the finest grid dimen-

sions increase. Evidently, the geometric increase in fre- Obviously, the relative contribution from restriction and
prolongation will depend on the amount of smoothing.quency of visitation has a significant effect.

The run time per cycle is approximately three times that The cost of the intergrid transfer steps scales linearly
with problem size, as was the case for smoothing (for VP .of the V cycle. For large VP, efficiency is approximately

the ratio of busy to elapsed time, and from the figure one 32), which reflects the fact that restriction/prolongation
are just local averaging/interpolation operations appliedcan infer that the W cycle efficiency is much less than the

V cycle efficiency. Furthermore, since the frequency of to every residual. However, this cost does depend on the
number of processors. The CM-5 fat-tree network is in-visitation of coarse grids scales geometrically with the num-

ber of grid levels, the efficiency of W cycles decreases as volved in this step because restriction and prolongation
inevitably require parallel-array expressions involving twothe problem size increases, if additional levels are added.

In contrast, V cycles are nearly scalable, as discussed in arrays which are declared to have different dimensions,



344 BLOSCH AND SHYY

tion patterns (i.e., between nearest-neighbor SPARC
nodes) and 128 MBytes/s for random (global) communica-
tions. Thus, it is really only true to say that the performance
of the network is scalable beyond height 2. The restriction
and prolongation routines evidently generate communica-
tions which travel farther up the tree on 512 nodes than
on 32 nodes. The net effect is that a prolongation from a
grid level with VP 5 1K to a grid level with VP 5 4K
takes longer on 512 nodes, although not by much.

From the relatively small contribution made by restric-
tion and prolongation it follows that multigrid cycles are
nearly scalable, as shown in Fig. 6. This figure plots the
isoefficiency metric of scalability as described in [29, 28].
Curves of constant parallel efficiency were drawn for a
range of problem sizes and number of processors using
linear least-squares curve fits to the timing data. The isoef-
ficiency curves are almost linear or, in other words, the 7-
level multigrid algorithm analyzed on a per-cycle basis, is
almost scalable. Each of the isoefficiency curves can be
accommodated by an expression of the form

N 2 N0 5 constant (np 2 32)a, (3)

with a Q 1.1. The symbol N0 is the initial problem size
needed to obtain a particular E on 32 processors.

Along perfectly straight isoefficiency curves, ‘‘scaled-
speedup’’ [23, 22] is achieved. In other words, if the parallelFIG. 5. Smoothing and prolongation times per V-cycle, as a function
run time Tp at some initial problem size and number ofof the problem size, for 32 and 512-node CM-5 computers (128 and 2048
processors is acceptable, then it can be maintained as theprocessing elements, respectively). The times are elapsed times, for V(3,2)

cycles: 5 smoothing iterations, 1 restriction, and 1 prolongation, at each problem size and the number of processors are increased
grid level. The restriction cost is not shown for clarity. The trend is the in proportion. We also note that although we have used
same as for prolongation and the time is roughly the same. point-Jacobi inner iterations, we expect similar scalability

i.e., one which is defined on the coarse grid and one which
is defined on the fine grid. The mapping of arrays to proces-
sors is done at run time, as it must be since the number
of processors is unknown a priori. Thus, the compiler has
no knowledge that would enable it to recognize that the
restriction or prolongation expression could probably be
accomplished with a regular communication pattern. It
must assume that the communication pattern is general,
and let the run-time communication library do the routing.
In the example above, we find that the prolongation to the
grid level with VP 5 4K, which is roughly 360 3 360 on
32 nodes and 1440 3 1440 on 512 nodes, takes 0.4 s on 32
nodes but 0.5 s on 512 nodes.

Evidently, the performance of the global data network
is not perfectly scalable for the prolongation. According
to Ref. [52], the global communication network of a 32-
node CM-5 is a fat tree of height 3. The fat tree is similar to

FIG. 6. Isoefficiency curves for the 7-level pressure-correction
a binary tree except the bandwidth stays constant upwards multigrid method, based on timings of a fixed number of V(3,2) cycles,
from height 2 at 160 MBytes/s. In practice, one can expect using point-Jacobi inner iterations. The isoefficiency curves have the

general form N 5 anb
p 1 constant, where b Q 1.1 for the efficiencies shown.approximately 480 MBytes/s for regular grid communica-
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level computation. In practice, V cycles are continued on
each level until the prescribed coarse-grid convergence
tolerances are met.

Thus the coarse-grid tolerances figure into both the cost
and the effectiveness of the FMG procedure. We have
observed that both the convergence rate and the stability
of multigrid iterations can be affected by the initial fine-
grid guess, depending on the stabilization strategy and flow
problem. With regard to cost, the FMG iterations are of

FIG. 7. Schematic of an FMG V(3,2) multigrid cycle. more concern for parallel computation than for serial com-
putation, due to the relative inefficiency with which coarse
grids are smoothed. Usually they are still cost-effective(although longer actual run times given a particular prob-
[56], but the overall efficiency can be quite low unless thelem size) with line-Jacobi inner iterations, based on previ-
fewest possible number of coarse-grid cycles are taken.ous comparisons between the two in the context of single-

Based on discussions in Ref. [55, 41, 7] we have devel-grid computations [4]. Since the line-iterative method is
oped an estimate of the solution truncation error, and itO(Nlog2 N), Tp would increase slightly along the isoeffi-
is this quantity which we monitor during the FMG cyclingciency curves, but the effect due to the logarithmic factor
to assess convergence. Ultimately the FAS scheme triesis generally quite small due to the early cut-off tolerance
to obtain the same solution at corresponding locations onin the cyclic reduction kernel used in the line solver, which
every grid level by adding source terms related to thereduces the amount of long-distance communication.
difference in truncation errors between adjacent levels in
the grid hierarchy. Thus the solutions on all the coarse3.2. Multigrid Convergence Rate Characteristics
grids in the FMG procedure should be made close to the

The total solution cost is the number of iterations differential solution, i.e.,
multiplied by the cost per iteration, and viable paths to
massively parallel computing requires scalability in both

iAhu 2 Ahvhi # «, (4)dimensions. For linear model equations, multigrid methods
can obtain convergence rates which show perfect problem-

where Ah is the discrete equation operator on some coarsesize independence. However, for fluid flow problems, ideal
grid whose grid spacing is denoted by h, u is the exactperformance cannot be achieved in general and there are
differential solution, vh is an approximate solution to themany unresolved issues, as outlined in the background
discrete problem whose exact solution is uh, and « is asection. Thus our focus has been on developing under-
small number. The development for the coupled systemstanding of important factors affecting the convergence
of momentum and continuity equations is given in Ref.rate and stability.
[3], but here we discuss a single equation for brevity.

Truncation Error Control of FMG Cycling and Implica- Since u is unknown, though, one can only assess the
tions. The initial guess for the fine-grid solution impacts equation residual rh 5 iAhuh 2 Ahvhi. To relate the residual
the convergence rate, and so a nested iteration approach to the level of truncation, use the triangle inequality and
for generating the starting fine-grid solution, also called a the definition of truncation error,
‘‘full-multigrid’’ (FMG) strategy, is generally desirable.
The convergence rate of FMG-V cycles is nearly scalable, iAhuh 2 Ahvhi # iAhuh 2 Ahui 1 iAhu 2 Ahvhi # it hi 1 «
for linear problems, given suitable restriction, smoothing, (5)
and prolongation procedures. In the present context the
following technique is used. Starting with a zero initial

where th denotes the solution truncation error on theguess on the coarsest grid, a few pressure-correction itera-
coarse grid. Thus for small «tions are done to obtain an approximate solution. This

solution is prolongated to the next grid level and 2-level
irhi # it hi (6)multigrid V cycles are initiated, continuing until some con-

vergence criterion is met. The solution is prolongated to
should be the convergence criterion. The truncation errorthe next finer grid and multigrid cycling (3-level this time)
is in turn related to the discretization of two adjacent gridresumes again, and so on until the finest grid level is
levels, assuming a second-order scheme, asreached. The converged solution on level kmax 2 1, where

k denotes the grid level, interpolated to the fine grid, is a
better starting point than an arbitrary or zero fine-grid

t h 5
[A2hu 2 S2h] 2 [Ahu 2 Sh]

3
, (7)

solution. Fig. 7 shows a ‘‘1-FMG’’ V(3,2) cycle for a 4-
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where S2h just indicates the source term on the grid with
spacing 2h; by the problem definition, S2h 5 A2hu2h, and
likewise for Sh. Equation (7) is evaluated on the grid whose
spacing is 2h to give the truncation error estimate for the
grid whose spacing is h. Substituting the most current ap-
proximations for u, vh and v2h, Eq. (7) becomes

th Q
[A2h(v2h) 2 S2h] 2 [Ahvh 2 Sh]

3
. (8)

The second term in brackets is just the residual rh, which
as discussed below is approximated on the grid with spacing
2h by summing over the appropriate control volumes for
the finite-volume methodology. Thus it can be observed
that the truncation error is just the numerically derived
part of the source term in the discretized equation on the
grid whose spacing is 2h,

t h Q
S2h

numerical

3
. (9)

FIG. 8. Streamfunction, vorticity, and pressure contours for Re 5

5000 lid-driven cavity flow, using the 2nd-order upwind convectionThus Eq. (6), the convergence criterion, is
scheme. The streamfunction contours are evenly spaced within the recir-
culation bubbles and in the interior of the flows, but this spacing is
not the same. The actual velocities within the recirculation regions areirhi # IS2h

numerical

3 I. (10) relatively weak compared to the core flows.

Two levels are always available to make this estimate for
problems pose different challenges for our smoothing pro-the coarse grid cycling in the FMG procedure. The L1 cedure, and at the same time are representative of broadernorm is used, divided by the appropriate number of control
classes of flow problems.volumes; for a gridvector v on an N 3 N mesh,

Two stabilization strategies have been considered. One
is the defect-correction approach as described in Ref. [50,
55, 57, 3, 2]. The convection terms on all the grid levelsivi 5 O

all i,j

uvi,ju
N2 . (11)

are discretized by first-order upwinding, but on the finest
grid, a source-term correction is applied which allows the

Equation (10) is evaluated on the fly and without additional second-order accurate central-difference solution, pro-
cost since the source term S2h

numerical is already evaluated as vided it is stable, to be recovered when the multigrid itera-
part of the coefficient computations for the previous tions converge. The fine grid discretized equations for one
multigrid cycle’s post-smoothing iterations on the grid of the velocity components f at iteration n 1 1, for a
whose spacing is 2h. control volume, are set up in the form

Numerical Experiments. Two flow problems with dif-
[au1

P fP 2 au1
E fE 2 au1

WfW 2 au1
N fN 2 au1

S fS 2 bu1
P ]n11

(12)
ferent physical characteristics have been considered, a lid-
driven cavity flow at Reynolds number 5000 and a symmet- 5 [ru1]n11 5 [ru1 2 rce]n,
ric backward-facing step flow at Reynolds number 300.
Streamlines, velocity, vorticity, and pressure contours are where the superscripts u1 and ce denote first-order up-

winding and central-differencing, n denotes the currentshown in Figs. 8 and 9. In the lid-driven cavity flow, convec-
tion and cross-stream diffusion balance each other in most values, r denotes equation residuals, b denotes source

terms, and the coefficient subscripts denote the spatialof the domain and the pressure gradient is insignificant
except in the corners. The flow is not generally aligned coupling between the east, west, north, and south f’s. The

second-order central-difference solution, rce R 0, is recov-with the grid lines. In the symmetric backward-facing step
flow, the pressure gradient is in balance with viscous diffu- ered when [ru1]n11 is approximately equal to [ru1]n.

The other approach is to use a stable second-order accu-sion, and except in the (weak) recirculation region, is
strongly aligned with the grid lines. Thus, the two model rate scheme on all grid levels, in this case second-order
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2-D). The method of integration for source terms deter-
mines the actual restriction procedure; we use piecewise
constant. In either a staggered grid or cell-centered finite-
volume formulation, the mass residual in a coarse-grid
control volume is the sum of the mass residuals in the four
fine-grid control volumes which comprise the coarse-grid
control volume. In addition, the u-momentum equation
residuals on the fine grid are treated as piecewise constant,
and summed over the region corresponding to the coarse-
grid u control volume under consideration. Due to the
staggered grid, this involves summation over six fine-grid
u control volumes, taking only half the contribution from
four of the control volumes. The same procedure applies to
the v-momentum equation residuals. For the prolongation
step, we use a linear interpolation as described in [47] for
staggered grids.

Typically the mass residuals are treated in this manner
(conservation as the restriction procedure), but the sum-
mation of momentum residuals has proven problematic in
other work [50, 47], even though it is physically consistent.
By summing the mass residuals, and restricting uh and vh

by cell-face averaging, satisfaction of the continuity equa-
tion can be identically maintained on the coarse grids at
all times. This is not strictly necessary except at conver-

FIG. 9. Streamfunction, vorticity, pressure, and velocity component gence, and it generates source terms in the coarse-grid
contours for Re 5 300 symmetric backward-facing step flow, using the

momentum equations, since the cell-face averaged solu-2nd-order upwind convection scheme. The streamfunction contours are
tions will not in general satisfy the momentum equations.evenly spaced within the recirculation bubbles and in the interior of the

flows, but this spacing is not the same. The actual velocities within the Thus, due to the source terms, the smoothing iterations
recirculation regions are relatively weak compared to the core flows. may diverge when summation of residuals is used in con-

junction with cell-face averaging of the velocity variables.
In that case, cell-face averaging of the residuals may be
better because, by effectively reducing (by Af) the magnitudeupwinding. For the second-order upwind scheme, the

equation coefficients are computed as in Ref. [48]. It is of the numerically derived source terms, convergence may
be easier to obtain, albeit with a much slower convergenceinteresting to note that the cost of the momentum equation

coefficient computations on the CM-5 using either second- rate. Clearly, summation of both mass and momentum
residuals is desirable, but what about the solution vari-order upwind or defect-correction is about the same and

approximately 30% more than central-differencing. While ables?
In the FAS formulation, the coarse-grid equations incor-the second-order upwind stencil involves two upwind

neighbors and consequently has more communication, the porate numerically derived source terms which are the
difference between the restricted fine-grid equation residu-defect-correction scheme has to compute more for the

source terms. Shyy and Sun [47] compared the second- als and the coarse-grid equation residuals based on an
‘‘initial’’ coarse-grid solution, which may be obtained byorder upwinding approach with the approach of using first-

order upwinding and central-differencing on all grid levels, restricting the fine-grid variables. See Ref. [47] for details.
In the original description of FAS, both solution variablesfor those cases in which the latter approach was stable.

Comparable multigrid convergence rates were obtained and residuals were restricted [6]. However, the initial
coarse-grid solution may also be taken from the previousfor all three convection schemes in Re 5 100 and Re 5

1000 lid-driven cavity flows, whereas for single-grid compu- multigrid cycle’s ‘‘upstroke,’’ i.e., the most recent solution,
and we have observed that in some cases this strategytations there were relatively large differences in the conver-

gence rates. is preferable.
Figure 10 compares the convergence rates of V(3,2) cy-The restriction technique also affects the convergence

rate. For finite-volume discretizations, conservation is the cles in two cases—curve 1 indicates cell-face averaging of
the velocity variables and bilinear interpolation of pres-restriction procedure which is consistent with the finite-

volume discretization. The reason is that the terms in the sure, while curve 2 indicates taking the most recent coarse-
grid solution. All other parameters/procedures are identi-discrete equations represent integrals over an area (in
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locations. In the case of cell-face averaging, however, the
coarse-grid continuity equation has no artificial source
terms and so the pressure field is not able to adjust to
reestablish the satisfaction of the momentum equations
destroyed by the uncoordinated restrictions of u and v. If
the coarse-grid source terms are important, as they gener-
ally are for the defect-correction cases since one is effec-
tively switching between a central-difference and first-
order upwind convection scheme, convergence may be im-
possible, as we observe in the step flow of Fig. 10. The
key point is that for a system of coupled equations, the
restriction of the solution variables must be coordinated
with the restriction of the residuals. Our experience indi-
cates that it is a more robust approach to let the initial
coarse-grid values float, effectively letting the coarse-grid
equations respond only to the approximation of the fine-
grid residuals, which are obtained in a manner consistent
with the finite-volume discretization of the governing equa-
tions. However, this technique should be investigated
further.

Returning now to the truncation error criterion, we con-
FIG. 10. The convergence path of the u-residual L1-norm on the

sider the step flow first. For this simulation, a 321 3 81finest grid level in the 5-level Re 5 300 symmetric backward-facing step
fine grid was used, with 5 multigrid levels. V(3,2) cyclesflow and 7-level Re 5 5000 lid-driven cavity flow. Contrasted are the

two alternative treatments for restriction of solution variables: (1) cell- were used, and for the smoothing iterations, 3, 3, and 9
face averaging for velocities with bilinear interpolation for pressure; and inner iterations of the point-Jacobi type were taken. The
(2) use of the most recent coarse-grid solution. In all cases the residuals relaxation factors were guv 5 0.6 and gc 5 0.4. Figure 11
are restricted by summation.

compares the convergence paths for different coarse-grid
convergence tolerances in the FMG procedure, i.e., differ-
ent initial solutions on the finest grid. The second-order

cal and are described below. The two approaches give upwind and defect-correction stabilization strategies are
comparable performance except in the step flow using de- compared, also. The curves shown have the following
fect-corrections, for which the solution does not converge meanings. ‘‘TE-1’’ and ‘‘TE-5’’ refer to the truncation error
(or diverge) when both solutions and residuals are re- criterion described above, with the denominator set to 1
stricted. and 5. We have treated Eq. (6) as a heuristic to observe

The problematic case indicates a competitive balance the sensitivity of this approach to the approximations that
instead of a complementary effect, from the fine grid’s have been made. ‘‘1FMG’’ refers to the FMG cycle taking
perspective, between smoothing and coarse-grid correc- only one V cycle on each coarse-grid level, as shown in
tion. Consider the situation when the fine-grid mass and Fig. 7. ‘‘23.0’’ and ‘‘25.0’’ refer to constant coarse-grid
momentum residuals are everywhere zero, i.e., conver- convergence tolerances on each level; e.g., log10irhi 5 23.0.
gence. To maintain convergence in the case where the The ‘‘graded’’ tolerances, shown for the defect-correc-
initial coarse-grid solution is taken from the previous cycle, tion scheme only, refer to our attempt to pick reasonable
the coarse-grid correction quantities Du2h as in values for each level a priori. Specifying graded tolerances

is equivalent to specifying a fixed tolerance using a residual
Du2h

to be prolongated 5 u2h
smoothed, upstroke 2 u2h

initial, downstroke , (13) that is normalized by a momentum flux instead of the
number of control volumes, which is the approach used by
Shyy and Sun [47]. Since, the equation residuals physicallywhere u refers to either velocity components or pressure

and the subscripts are self-explanatory, must be zero. Since represent integrated quantities in the finite-volume formu-
lation, the net residual regardless of the grid level shouldwe are summing the fine-grid residuals, that contribution

to the coarse-grid source term which comes from the fine be roughly the same and hence graded tolerances are ap-
propriate. However, the truncation error will not in generalgrid is zero. However, the initial coarse-grid solution does

not satisfy the governing equations discretized on the be spaced evenly, i.e., according to a factor of 4, because
it depends on the solution, and so it becomes very difficultcoarse grid; rather there must be, in the general case, non-

zero source terms, since the coarse-grid solutions are an to choose a priori a good set of graded tolerances. Note
also in the figure that CM-5 busy time is used since equiva-approximation to the fine-grid solution at corresponding
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is ‘‘TE-1’’ whose rate of error reduction per cycle corres-
ponds to a smoothing rate of 0.95. As discussed earlier,
in the defect-correction multigrid cycle we use first-order
upwinding on all the coarse-grid levels, applying the source
term corrections only on the finest grid. So the present
results are consistent with the truncation error derivation
sketched above which suggests a denominator 1 in the case
of first-order discretizations.

It should be stressed that for each of the curves, identical
procedures are used after the FMG procedure, i.e., once
the fine-grid cycles are initiated, which is the point where
the curves begin. Thus the fact that the asymptotic conver-
gence rates differ reflects differences in the initial fine-grid
guess. Brandt and Ta’asan [7] have shown that there can
exist certain error modes in the initial fine-grid solution
which are damped very slowly by the smoothing-correction
multigrid combination when the flow is aligned with the
grid and the convection terms are first-order upwinded, as
in the present case; this may explain the observed conver-
gence behavior.

For the lid-driven cavity simulation, a 321 3 321 fine
grid was used, with 7 multigrid levels. Again, V(3,2) cycles
were used, and for the smoothing iterations, 3, 3, and 9
inner iterations of the point-Jacobi type were taken. The
relaxation factors were guv 5 0.5 and gc 5 0.5. Some
observations regarding Fig. 12 (the lid-driven cavity
flow) are:

(1) The convergence rate for this recirculating-type
flow, which corresponds to an error smoothing rate of
about 0.99, is not as good as for the entering-type flow.
However, the results appear to be consistent with the re-
sults obtained by Sockol [50]. For the Re 5 5000 lid-driven
cavity flow, using SIMPLE with nu 5 nn 5 1 and nc 5 4
inner line-iterations and a W(1,1) multigrid cycle, Sockol

FIG. 11. The convergence path of the u-residual L1-norm on the
found that 86 work units were needed to reach convergencefinest grid level in the 5-level Re 5 300 symmetric backward-facing step
(800 s on an Amdahl 5980). To reach a similar convergenceflow. The relaxation factors used were guv 5 0.6, and gc 5 0.4.
tolerance, the present computation needed 30 cycles on
the fine grid, which is 200 work units (64 s on the CM-5).
Additional experiments have shown that for the cavitylent fine-grid iterations (work units) are not an accurate
flow V(2,1) cycles are sufficient to obtain the same conver-approximation for parallel computations. Some observa-
gence rate as with V(3,2) cycles, and so our work units aretions regarding Fig. 11 (the step flow) are:
effectively overstated by about 2.7 wu per cycle, yielding

(1) Second-order upwinding performs better than de- an equivalent of 119 work units.
fect-correction. The u-residual norm reaches 28.0 in Experience has shown that for this unique flow problem,
slightly more than 20 s on the CM-5, which equates to 140 the inner iterative method (line-relaxation or point-Jacobi)
work units, 20 fine-grid V(3,2) cycles. This corresponds to has no impact on the convergence rate of the outer itera-
an amplification factor of 0.7 per cycle. Since the conver- tions, and so this procedural difference between our work
gence is fast, the contribution of the FMG startup proce- and Sockol’s is irrelevant here. The slightly faster conver-
dure to the overall cost is a significant fraction of the gence observed by Sockol may be attributable to the use
overall parallel run time, whereas it would not be on a of a W cycle instead of a V cycle. However, for this 7-level
serial computer. problem size, W(1,1) cycles take twice as long as V(2,1)

cycles on the CM-5, so the total run time is less using(2) The convergence rate for defect-correction de-
pends strongly on the initial fine-grid guess. The best case the latter.
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the FMG procedure does not seem to matter, an observa-
tion that is consistent with a convection-dominated flow-
field—if the true velocity field has a strong upwind effect
the defect-correction source terms are small.

In the second-order upwind cases of Fig. 12, convergence
was only obtained for those cases which used the truncation
error criterion. Experience with single-grid computations
suggests that for high Reynolds number lid-driven cavity
flows, the second-order upwind scheme is harder to con-
verge than either the defect-correction, first-order upwind,
or central-difference schemes for a given set of relaxation
factors. Thus the second-order upwind cases which di-
verged can be made to converge by increasing the amount

FIG. 12. The convergence path of the u-residual L1-norm on the
finest grid level in the 7-level Re 5 5000 lid-driven cavity flow. The
relaxation factors used were guv 5 gc 5 0.5.

(2) For either defect-correction or second-order up-
winding, the convergence rate does not depend on the
criterion used in the FMG procedure, i.e., on the initial
fine-grid guess. In experiments with the defect-correction
strategy, we have found that no matter how stringently the
intermediate grid-level solutions are converged the error
norm begins at approximately the same value, as shown
in Fig. 13. The figure compares the convergence paths of
the u-residual norm during the FMG procedure for the
‘‘TE-5’’ and ‘‘23.0’’ curves, i.e., for the time preceding the

FIG. 13. The convergence path of the u-residual L1-norm during the
starting time for the corresponding curves in the top plot FMG procedure for the 7-level Re 5 5000 cavity flow, using the defect-
of Fig. 12. These results indicate that the number of defect- correction strategy, contrasting two criteria for controlling the coarse-

grid cycling.correction iterations used on a given outer grid level during
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of smoothing and/or the relaxation factors. It is also possi- where NI and NJ refer to the fine-grid dimensions for a
2-d problem, and kmax is the number of levels. Obviouslyble that the bilinear interpolation prolongation procedure

used here may be less compatable with a second-order the coarse grid levels should not be dimensioned to the
fine grid extents, or else the size of problem which can beupwinded solution than a central-differenced one.
solved is greatly reduced. The total amount of memory

4. CONCLUSIONS used in the naive approach is the number of arrays, narray ,
multiplied by the storage cost of each array,

Multigrid methods by their nature are iterative and,
when the smoother is also iterative, as in the present case,

Storage 5 NI NJ kmax narray . (14)they pose a difficult challenge for efficient data-parallel
SIMD-style computation. The relative speed of front-end-

The actual storage needed is onlyto-processor and interprocessor communication, com-
pared to the computation speed, is the key to efficiency.
For V cycles, the coarse-grid contributions to the overall
cost are nonnegligible but still small enough that nearly Storage 5 Okmax

k51
NIkNJknarray 5 Okmax

k51

NIkmax
NJkmax

narray

2(kmax2k) . (15)
scalable performance is obtained as the problem size and
number of processors are increased in proportion.

The single-grid SIMPLE method using the point-Jacobi The actual storage needed approaches only (Fd)
solver ran at 420 MFlops on a 32-node (128 VU) CM-5. NIkmax

NJkmax
narray as kmax increases. Thus the wasted storage

The multigrid cost per 7-level cycle was dominated by is (kmax 2 Fd)NIkmax
NJkmax

narray when the naive approach is
the smoothing costs, and the parallel efficiency was 0.65 used. Clearly this can become the dominating factor very
compared to 0.8 for the single-grid program (about a 20% quickly as the number of levels increases.
decrease). Parallel efficiency can be computed based on The resolution for serial computation [41] is to declare
the detailed timing information as was done in Ref. [4]. a 1-d array of sufficient size to hold all the data on all
Thus the speed of 7-level V cycles on 32 nodes is approxi- levels and to reshape it across subroutine boundaries, tak-
mately 333 MFlops. The efficiency and speed improve ing advantage of the fact that Fortran passes arrays by
slightly with fewer multigrid levels, but in the general case reference. One passes part of the 1-d array beginning at
this comes at the expense of convergence rate. the appropriate element for the grid level under consider-

The convergence rate of multigrid methods for the ation and then locally dimensions it as a 2-d array with the
steady-state Navier–Stokes equations depends on many proper dimension extents. This reshaping of arrays across
interacting factors, including the restriction/prolongation subroutine boundaries is possible because the physical lay-
procedures, the amount of pre- and post-smoothing, the out of the array is linear in the computer’s memory.
initial fine-grid guess, the stabilization strategy, and the For distributed memory data-parallel computation, how-
flow problem. Furthermore, our experience with sequential ever, the data arrays are not physically in a single processor
pressure-based smoothers has been that none of these con- memory, they are distributed among the processors. In-
siderations are unimportant. V cycling in conjunction with stead of being passed by reference as is the case with
the truncation-error-controlled nested iteration technique Fortran on serial computers, data-parallel arrays are
was found to be a robust method for both recirculating passed to subroutines by ‘‘descriptor’’ on the CM-5. The
and entering type flow problems which gave convergence array descriptor is a front-end array containing 18 elements
rates consistent and competitive with the results reported that describe the layout of the physical processor mesh,
in the literature for steady-state incompressible Navier– the virtual subgrid dimensions, the rank and type of the
Stokes equations using sequential pressure-based array, the name and so on.
smoothers. In CM-Fortran the storage problem can be resolved

using array ‘‘aliases.’’ Array aliasing has a function similar
APPENDIX: ARRAY-BASED PARALLEL MULTIGRID to the Fortran EQUIVALENCE function. Storage is ini-

STORAGE PROBLEM tially declared for all grid levels, explicitly referencing the
physical layout of the processors. For example, an array

For array-based parallel programming, the scalability of A with fine-grid dimension extents NIkmax
3 NJkmax

, is de-
the multigrid storage cost is a problem. Generally, a vari- clared as follows for a 128-vector-unit CM-5 (32 nodes)
able number of multigrid levels is desired, but care must with the vector units logically arranged in an 8 3 16 mesh:
be taken not to waste memory. The naive approach is
to make the multigrid levels explicit by adding a third

PARAMETER (Non-proc 5 (Fd)NIkmax
NJkmax

/(ni
p p nj

p) ,dimension to all arrays, for example,
ni

p 5 8, nj
p 5 16)

REAL*8A(Non-proc ,ni
p , nj

p).REAL*8 A( NI,NJ, kmax),
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